Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.20.20248602

ABSTRACT

BackgroundA safe and effective coronavirus disease 2019 (COVID-19) vaccine is urgently needed to control the ongoing pandemic. Although progress has been made recently with several candidates reporting positive efficacy results, COVID-19 vaccines developed so far cannot meet the global vaccine demand. We developed a protein subunit vaccine against COVID-19, using dimeric form of receptor-binding domain (RBD) as the antigen. We aimed to assess the safety and immunogenicity of this vaccine in humans and determine the appropriate dose and schedule for an efficacy study. MethodsWe did two randomized, double-blind, placebo-controlled, phase 1 and 2 trials for an RBD-based protein subunit vaccine, ZF2001. In phase 1 study, 50 healthy adults aged 18-59 years were enrolled and randomly allocated to three groups to receive three doses of vaccine (25 g or 50 g RBD-dimer, with adjuvant) or placebo (adjuvant-only) intramuscularly, 30 days apart. In phase 2 study, 900 healthy adults aged 18-59 years were enrolled and randomly allocated to six groups to receive vaccine (25 g or 50 g RBD-dimer, with adjuvant) or placebo (adjuvant-only) intramuscularly, with the former 3 groups given two doses and the latter 3 groups given three doses, 30 days apart. For phase 1 trial, the primary outcome was safety, as measured by the occurrence of adverse events and serious adverse events. The secondary outcome was immunogenicity as measured by the seroconversion rate and magnitude of antigen-binding antibodies, neutralizing antibodies and T-cell cytokine production. For phase 2 trial, the primary outcome included both safety and immunogenicity. These trials are registered with ClinicaTrials.gov, NCT04445194 and NCT04466085. FindingsBetween June 22 and September 15, 2020, 50 participants were enrolled to the phase 1 study (mean age 32.6 years) and 900 participants were enrolled to phase 2 study (mean age 43.5 years), to receive vaccine or placebo with a two-dose or three-dose schedule. For both trials, local and systemic adverse reactions were absent or mild in most participants. There were no serious adverse events related to vaccine in either trial. After three doses, neutralizing antibodies were detected in all participants receiving either 25 g or 50 g dose of vaccine in phase 1 study, and in 97% (the 25 g group) and 93% (the 50 g group) of participants, respectively, in phase 2 study. The SARS-CoV-2-neutralizing geometric mean titres (GMTs) were 94.5 for the 25 g group and 117.8 for the 50 g group in phase 1, and 102.5 for the 25 g group and 69.1 for the 50 g group in phase 2, exceeding the level of a panel of COVID-19 convalescent samples (GMT, 51). Vaccine induced balanced TH1 and TH2 responses. The 50 g group did not show enhanced immunogenicity compared with the 25 g group. InterpretationThe protein subunit vaccine ZF2001 is well-tolerated and immunogenic. The safety and immunogenicity data from phase 1 and 2 trials for ZF2001 support the use of 25 g vaccine dose with three-dose schedule to an ongoing phase 3 large-scale evaluation for safety and efficacy. FundingNational Program on Key Research Project of China, National Science and Technology Major Projects of Drug Discovery, Strategic Priority Research Program of the Chinese Academy of Sciences, and Anhui Zhifei Longcom Biopharmaceutical.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.09.20171132

ABSTRACT

A long-standing question in infectious disease dynamics is the role of transmission heterogeneities, particularly those driven by demography, behavior and interventions. Here we characterize transmission risk between 1,178 SARS-CoV-2 infected individuals and their 15,648 close contacts based on detailed contact tracing data from Hunan, China. We find that 80% of secondary transmissions can be traced back to 14% of SARS-CoV-2 infections, indicating substantial transmission heterogeneities. Regression analysis suggests a marked gradient of transmission risk scales positively with the duration of exposure and the closeness of social interactions, after adjusted for demographic and clinical factors. Population-level physical distancing measures confine transmission to families and households; while case isolation and contact quarantine reduce transmission in all settings. Adjusted for interventions, the reconstructed infectiousness profile of a typical SARS-CoV-2 infection peaks just before symptom presentation, with ~50% of transmission occurring in the pre-symptomatic phase. Modelling results indicate that achieving SARS-CoV-2 control would require the synergistic efforts of case isolation, contact quarantine, and population-level physical distancing measures, owing to the particular transmission kinetics of this virus.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.23.20160317

ABSTRACT

BackgroundSeveral parameters driving the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear, including age-specific differences in infectivity and susceptibility, and the contribution of inapparent infections to transmission. Robust estimates of key time-to-event distributions remain scarce as well. MethodsWe collected individual records for 1,178 SARS-CoV-2 infected individuals and their 15,648 contacts identified by contact tracing and monitoring over the period from January 13 to April 02, 2020 in Hunan Province, China. We provide descriptive statistics of the characteristics of cases and their close contacts; we fitted distributions to time-to-key-events distributions and infectiousness profile over time; and we used generalized linear mixed model to estimate risk factors for susceptibility and transmissibility of SARS-CoV-2. ResultsWe estimated the mean serial interval at 5.5 days (95%CI -5.0, 19.9) and the mean generation time at 5.5 days (95%CI 1.7, 11.6). The infectiousness was estimated to peak 1.8 days before symptom onset, with 95% of transmission events occurring between 7.6 days before and 7.3 days after the date of symptom onset. The proportion of pre-symptomatic transmission was estimated to be 62.5%. We estimated that at least 3.5% of cases were generated asymptomatic individuals. SARS-CoV-2 transmissibility was not significantly different between working-age adults (15-59 years old) and other age groups (0-14 years old: p-value=0.16; 60 years and over: p-value=0.33), whilst susceptibility to SARS-CoV-2 infection was estimated to increase with age (p-value=0.03). In addition, transmission risk was higher for household contacts (p-value<0.001), decreased for higher generations within a cluster (second generation: odds ratio=0.13, p-value<0.001; generations 3-4: odds ratio=0.05, p-value<0.001, relative to generation 1), and decreased for infectors with a larger number of contacts (p-value=0.04). InterpretationOur findings warn of the possible relevant contribution of children to SARS-CoV-2 transmission. When lockdown interventions are in place, we found that odds of transmission are highest in the household setting but, with the relaxation of interventions, other settings (including schools) could bear a higher risk of transmission. Moreover, the estimated relevant fraction of pre-symptomatic and asymptomatic transmission highlight the importance of large-scale testing, contact tracing activities, and the use of personnel protective equipment during the COVID-19 pandemic.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL